loader
Cart
  • 0
  • 0
Go to Checkout - 0
    CART IS EMPTY
Item removed. Undo

  Cart

Finite Element Analysis of Civil Engg 3rd Yr/ II Sem

Finite Element Analysis for Civil Engineers

COURSE
0
Students Enrolled : 2
Total lectures : 40

What will I learn from this course?

  • Thorough in Finite Element Analysis

Requirements

  • Engineering Mathematics of Finite Analysis

Who is the target audience?

  • All Streams of B.tech and B.E Students

Description

 The invention of the finite element method, the method originated from the need to solve complex elasticity and structural analysis problems incivil and aeronautical engineering. Its development can be traced back to the work by A. Hrennikoff [2] and R. Courant.[3] In China, in the later 1950s and early 1960s, based on the computations of dam constructions, K. Feng proposed a systematic numerical method for solving partial differential equations. The method was called the finite difference method based on variation principle, which was another independent invention of finite element method. 

Course Curriculum

  • Lec 1: Finate Elements All Physical Phenomena 53m 39s                        
  • Lec 2: Finate Element Method in Numerical Approach 52m 7s                        
  • Lec 3: Finite Element Method Problem 56m 6s                        
  • Lec 4: Contd of Finite Element Method Problem 57m 55s                        
  • Lec 5: Basic Finite Elements Concepts 1h 47m 00s                        
  • Lec 6: Contd Basic Finite Elements Concepts 55m 34s                        
  • Lec 7: Contd Basic Finite Elements Concepts 51m 20s                        
  • Lec 8: Contd Basic Finite Elements Concepts 55m 49s                        
  • Lec 9: Governing Differential Equation 51m 14s                        
  • Lec 10: Finite Elements of Equations of Beam Elements 45m 46s                        
  • Lec 11: Calculate the Displacements 52m 59s                        
  • Lec 12: 2D Space Frames 1h 53m 00s                        
  • Lec 13: 3D Space Frame Element 51m 10s                        
  • Lec 14: Contd to 3D Space Frame Element 51m 48s                        
  • Lec 15: Direction Cosines using Orientation Angle 52m 24s                        
  • Lec 16: General One Dimentional Boundary Value Problem and its Applications 53m 11s                        
  • Lec 17: Two Node Linear Element 51m 3s                        
  • Lec 18: Higher Order Elements of One Dimentional Boundary Problems 54m 45s                        
  • Lec 19: One dimentional Numerical Integration 53m 21s                        
  • Lec 20: Contd to One dimentional Numerical Integration 51m 19s                        
  • Lec 21: Two Dimentional Boundary Value Problems 50m 57s                        
  • Lec 22: General Two Dimentional Boundary Value Problem 52m 33s                        
  • Lec 23: Contd to General Two Dimentional Boundary Value Problem 55m 33s                        
  • Lec 24: Quadrilateral Elements 52m 2s                        
  • Lec 25: Shape Function for 4 to 9 Node Rectangular Element 51m 18s                        
  • Lec 26: Element Equtions Development for Two Dimentional Problem 52m 39s                        
  • Lec 27: Evaluation of Area Integral 55m 35s                        
  • Lec 28: Formulation for Higher Order Triangular Elements 54m 53s                        
  • Lec 29: Contd with Higher oder of 6 Noded Traingular Element 49m 31s                        
  • Lec 30: Newton-Coats with one point,two point Rules 51m 25s                        
  • Lec 31: Gauss-Leguerre Rules 50m 27s                        
  • Lec 32: Torsion of Prismatic Bars 47m 40s                        
  • Lec 33: Examples of Two Dimentional Elements 51m 32s                        
  • Lec 34: Contd Two Dimentional Element 51m 34s                        
  • Lec 35: Elements of Derived Equations 57m 25s                        
  • Lec 36: 4 Node Quadrilateral Element 55m 33s                        
  • Lec 37: Axisymmetric Elasticity Problem 51m 4s                        
  • Lec 38: Governing Elements 50m 56s                        
  • Lec 39: Three Dimentional Elasticity 50m 29s                        
  • Lec 40: Eight Node Hexahedral elements 51m 4s                        

About Tutor

Dr. b.n. rao (iit madras)
Course: 0
Students: 2

Dr. B. Nageswara Rao Professor as a, Department of Civil Engineering, Indian Institute of Technology Madras

Developing new computational techniques in the areas of Computational solid mechanics.Finite element analysis
Meshless analysis,Computer-aided design,Structural reliability,Optimization,Stochastic mechanics,Fracture analysis
Crack propagation simulation studies & related fields

Details of major sponsored research projects:

Experimental and Analytical Studies on Two-Way Hollow Core slabs, 2013-16, Department of Science & Technology (DST)
Reliability based optimal design of FBR base raft, 2010-2012,Indira Gandhi Center for Atomic Research

Recommend along with this

Review's & Ratings

5 Stars 0
4 Stars 0
3 Stars 0
2 Stars 0
1 Stars 0
0 Overall Rating

23 Questions
    • A
      Anant Gaggar

      Fusce volutpat scelerisque lectus sed semper sollicitudin varius inceptos elit libero, molestie tincidunt velit praesent inceptos. ultrices praesent nisl risus.

      Reply
      • Al
        Vincenzo Petito

        Torquent nullam molestie ultrices primis hac fames risus sed id purus, turpis sit semper imperdiet libero praesent purus vitae torquent, ut sociosqu sodales id sodales faucibus eros litora vivamus posuere mauris. amet cursus risus donec habitant malesuada.

        Reply
        • AL
          Vincenzo Petito

          Sed semper sollicitudin varius inceptos elit libero, molestie tincidunt.

    • A
      Anant Gaggar

      Fusce volutpat scelerisque lectus sed semper sollicitudin varius inceptos elit libero, molestie tincidunt velit praesent inceptos. ultrices praesent nisl risus.

      Reply
Ask a Question